本文共 3464 字,大约阅读时间需要 11 分钟。
Matplotlib 是一个强大的绘图库,支持多种类型的图表绘制,包括柱状图、饼状图、条形图等。在本文中,我们将逐步学习如何使用 Matplotlib 进行数据可视化。
柱状图是最常用的数据可视化工具之一。下面是一个简单的柱状图示例:
import matplotlib.pyplot as pltnum_list = [1, 5, 6.5, 8, 11]plt.bar(range(len(num_list)), num_list)plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.show()
为了更直观地展示数据,可以通过设置颜色来区分不同柱状图:
import matplotlib.pyplot as pltnum_list = [1, 5, 6.5, 8, 11]plt.bar(range(len(num_list)), num_list, color='rgbcy')plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.show()
为柱状图添加标签,使图表更加用户友好:
import matplotlib.pyplot as pltnum_list = [1, 5, 6.5, 8, 11]name_list = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']plt.bar(range(len(num_list)), num_list, color='rgbcy', tick_label=name_list)plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.show()
当需要同时比较多个数据系列时,可以使用堆叠柱状图:
import matplotlib.pyplot as pltnum_list = [1, 5, 6, 8, 11]num_list2 = [2, 3, 5, 1, 4]name_list = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']plt.bar(range(len(num_list)), num_list, color='b', tick_label=name_list, label='男')plt.bar(range(len(num_list)), num_list2, color='g', tick_label=name_list, label='女', bottom=num_list)plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.legend(loc='best')plt.show()
如果想在水平方向展示数据,可以使用横向条形图:
import matplotlib.pyplot as pltnum_list = [1, 5, 6, 8, 11]num_list2 = [2, 3, 5, 1, 4]name_list = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']plt.barh(range(len(num_list)), num_list, color='b', tick_label=name_list, label='男')plt.barh(range(len(num_list)), num_list2, color='g', tick_label=name_list, label='女', left(num_list))plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.legend(loc='best')plt.show()
为了制作并列柱状图,可以将每个柱子水平拉宽:
import matplotlib.pyplot as pltnum_list = [1, 5, 6.5, 8, 11]num_list2 = [2, 3, 5, 1, 4]name_list = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']x = list(range(len(num_list)))total_width = 0.8n = 2 #柱子数量width = total_width / n
plt.bar(x, num_list, label='男', width=width)for i in range(len(x)): x[i] = x[i] + widthplt.bar(x, num_list2, tick_label=name_list, label='女', width=width)plt.title("数据分布")plt.xlabel("x轴")plt.ylabel("y轴")plt.legend(loc='best')plt.show()
饼状图适合展示不同部分所占的比例。以下是一个简单的饼状图示例:
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei'] # 正常显示中文sizes = [10, 30, 20, 40]labels = ['A', 'B', 'C', 'D']plt.pie(sizes, labels=labels)plt.title("饼状图")plt.legend(loc='best')plt.show()
要使饼状图的某一部分距离中心,可以设置 explode
参数:
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']sizes = [10, 30, 20, 40]labels = ['A', 'B', 'C', 'D']explode = (0, 0.1, 0.2, 0.1)plt.pie(sizes, labels=labels, explode=explode)plt.title("饼状图")plt.legend(loc='best')plt.show()
你可以通过 colors
参数为饼状图添加颜色:
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']sizes = [10, 30, 20, 40]labels = ['A', 'B', 'C', 'D']colors = ['r', 'g', 'y', 'b']plt.pie(sizes, labels=labels, colors=colors)plt.title("饼状图")plt.legend(loc='best')plt.show()
如果需要显示百分比,可以使用 autopct
参数:
import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']sizes = [10, 30, 20, 40]labels = ['A', 'B', 'C', 'D']colors = ['r', 'g', 'y', 'b']plt.pie(sizes, labels=labels, colors=colors, autopct='%1.2f%%')plt.title("饼状图")plt.legend(loc='best')plt.show()
以上就是从简单柱状图到饼状图的 Matplotlib 绘图技巧总结。如果你有任何问题或需要进一步的帮助,欢迎在评论区留言!
转载地址:http://mzagz.baihongyu.com/